Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecology ; 103(11): e3808, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792423

RESUMO

Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-ha forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g., more negative) CNDD than arbuscular mycorrhizal-associated species. CNDD was also stronger in more shade-tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.


Assuntos
Micorrizas , Árvores , Florestas , Plântula , Especificidade da Espécie
2.
Ecology ; 103(6): e3688, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324010

RESUMO

Tree biomass allocation to leaves, roots, and wood affects the residence time of carbon in forests, with potentially dramatic implications for ecosystem carbon storage. However, drivers of tree biomass allocation remain poorly quantified. Using a combination of global data sets, we tested the relative importance of climate, leaf habit, and tree mycorrhizal associations on biomass allocation. We show that trees that associate with arbuscular mycorrhizal (AM) fungi allocate roughly 4% more of their biomass to root tissue than trees that associate with ectomycorrhizal (ECM) fungi. Further, the effect of mycorrhizal association on root biomass allocation was greater than that of climate and similar in magnitude to that of leaf habit (evergreen vs. deciduous). These patterns in whole-plant biomass allocation are likely due to differences in carbon investment toward root versus fungal tissues, where trees with AM fungi favor root production while trees with ECM fungi favor fungal tissue production. These results suggest that considering tree mycorrhizal associations could improve our understanding of ecosystem carbon storage in terrestrial biosphere models: specifically, that greater within-tree allocation to root biomass in AM-associated tree species may contribute to stable soil carbon pools in forests dominated by AM fungi.


Assuntos
Micorrizas , Árvores , Biomassa , Carbono , Ecossistema , Raízes de Plantas/microbiologia , Árvores/microbiologia
3.
New Phytol ; 230(1): 316-326, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33341954

RESUMO

●Fine roots and mycorrhizal fungi may either stimulate leaf litter decomposition by providing free-living decomposers with root-derived carbon, or may slow decomposition through nutrient competition between mycorrhizal and saprotrophic fungi. ●We reduced the presence of fine roots and their associated mycorrhizal fungi in a northern hardwood forest in New Hampshire, USA by soil trenching. Plots spanned a mycorrhizal gradient from 96% arbuscular mycorrhizal (AM) associations to 100% ectomycorrhizal (ECM)-associated tree basal area. We incubated four species of leaf litter within these plots in areas with reduced access to roots and mycorrhizal fungi and in adjacent areas with intact roots and mycorrhizal fungi. ●Over a period of 608 d, we found that litter decayed more rapidly in the presence of fine roots and mycorrhizal hyphae regardless of the dominant tree mycorrhizal association. Root and mycorrhizal exclusion reduced the activity of acid phosphatase on decomposing litter. ●Our results indicate that both AM- and ECM-associated fine roots stimulate litter decomposition in this system. These findings suggest that the effect of fine roots and mycorrhizal fungi on litter decay in a particular ecosystem likely depends on whether interactions between mycorrhizal roots and saprotrophic fungi are antagonistic or facilitative.


Assuntos
Micorrizas , Ecossistema , Florestas , Fungos , Folhas de Planta , Raízes de Plantas , Solo , Microbiologia do Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...